Aligned Side Information Fusion Method for Sequential Recommendation

Shuhan Wang hanshu.wsh@antgroup.com Ant Group Hangzhou, China

Yong He heyong.h@antgroup.com Ant Group Hangzhou, China Bin Shen ringo.sb@antgroup.com Ant Group Hangzhou, China

Xiaolu Zhang yueyin.zxl@antgroup.com Ant Group Hangzhou, China Xu Min minxu.mx@antgroup.com Ant Group Hangzhou, China

Liang Zhang zhuyue.zl@antgroup.com Ant Group Hangzhou, China

Jun Zhou jun.zhoujun@antgroup.com Ant Group Hangzhou, China Linjian Mo linyi01@antgroup.com Ant Group Hangzhou, China

code:none

WWW 2024

Introduction

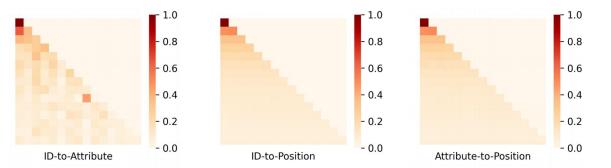
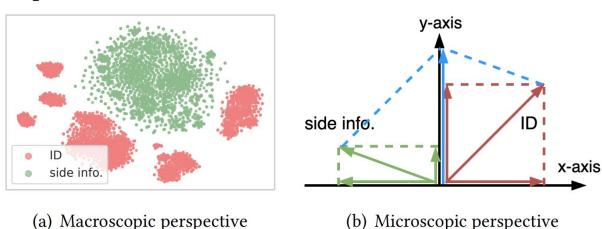



Figure 1: Visualization of attention scores in $SASRec_F$ on Yelp dataset.

Motivation:

Combining Side Information beyond IDs has become an important way to improve the performance in recommender systems.

Challenges:

- 1. Difficult to eliminate interference and learn meaningful signals from noisy correlations.
- 2. Difficult to avoid information invasion.

Figure 2: Visualization of information invasion.

Introduction

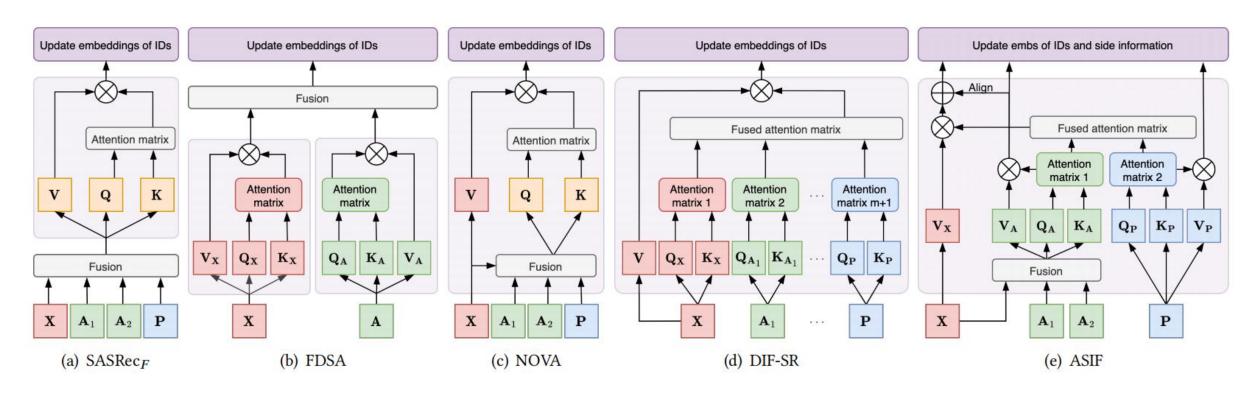
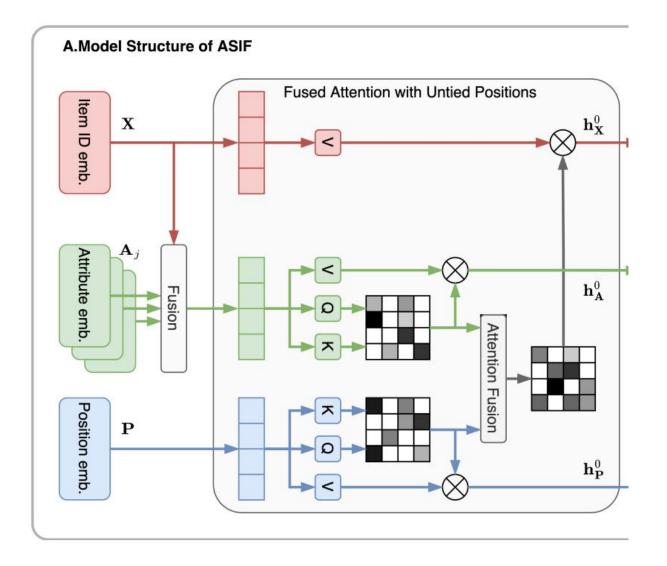



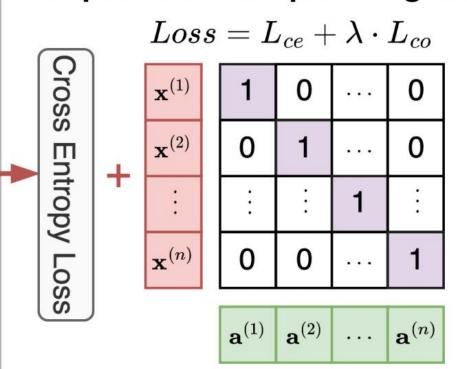
Figure 3: Single layer structure comparison of existing self-attention-based side information fusion approaches: $SASRec_F$ is early fusion, FDSA is late fusion, while NOVA, DIF-SR and ASIF is hybrid fusion.

Figure 4: An overview of ASIF.

$$C_{XA} = \mathcal{F}(X, A)W_{q,1}W_{k,1}^T \mathcal{F}(X, A)^T$$
(1)

$$\mathbf{C}_{\mathbf{P}} = \mathbf{P} \mathbf{W}_{q,2} \mathbf{W}_{k,2}^T \mathbf{P}^T \tag{2}$$

 $\mathbf{h}_{\mathbf{X}} = \text{FusedAttention}(\mathbf{X}, \mathbf{A}_1, \cdots, \mathbf{A}_m, \mathbf{P})$

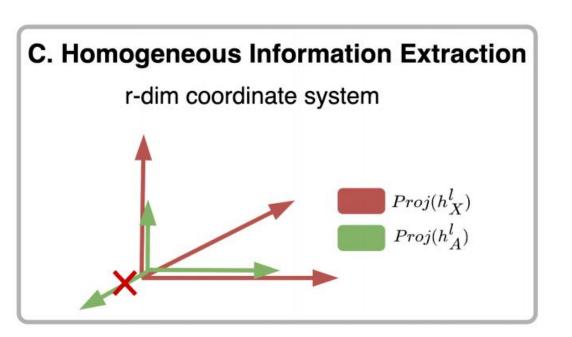

= Softmax
$$\left(\frac{C_{XA} + C_P}{\sqrt{d_h}}\right) XW_{v,1},$$
 (3)

 $\mathbf{h}_{\mathbf{A}} = \text{FusedAttention}(\mathbf{X}, \mathbf{A}_1, \cdots, \mathbf{A}_m)$

= Softmax
$$\left(\frac{C_{XA}}{\sqrt{d_h}}\right) \mathcal{F}(X, A) W_{v,2},$$
 (4)

$$\mathbf{h}_{\mathbf{P}} = \text{FusedAttention}(\mathbf{P}) = \text{Softmax}\left(\frac{\mathbf{C}_{\mathbf{P}}}{\sqrt{d_h}}\right) \mathbf{PW}_{v,3}$$
 (5)

B. Representation Space Alignment



$$\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \\ \vdots \\ \mathbf{x}^{(n)} \end{bmatrix}, \quad \mathbf{A} = \sum_{j=1}^{m} \mathbf{A}_{j} = \begin{bmatrix} \mathbf{a}^{(1)} \\ \mathbf{a}^{(2)} \\ \vdots \\ \mathbf{a}^{(n)} \end{bmatrix}$$
(6)

$$\widetilde{\mathbf{X}} = \begin{bmatrix} \mathbf{x}^{(1)} / \| \mathbf{x}^{(1)} \| \\ \mathbf{x}^{(2)} / \| \mathbf{x}^{(2)} \| \\ \vdots \\ \mathbf{x}^{(n)} / \| \mathbf{x}^{(n)} \| \end{bmatrix}, \quad \widetilde{\mathbf{A}} = \begin{bmatrix} \mathbf{a}^{(1)} / \| \mathbf{a}^{(1)} \| \\ \mathbf{a}^{(2)} / \| \mathbf{a}^{(2)} \| \\ \vdots \\ \mathbf{a}^{(n)} / \| \mathbf{a}^{(n)} \| \end{bmatrix}$$
(7)

$$\widehat{\mathbf{Y}}_{\mathbf{X}} = \operatorname{Softmax}\left(\widetilde{\mathbf{X}}\widetilde{\mathbf{A}}^{T}/\tau\right), \quad \widehat{\mathbf{Y}}_{\mathbf{A}} = \operatorname{Softmax}\left(\widetilde{\mathbf{A}}\widetilde{\mathbf{X}}^{T}/\tau\right)$$
 (8)

$$L_{co} = -\frac{1}{2N} \sum_{i=1}^{N} \sum_{i=1} \left(\mathbf{Y}^{i} \odot \log \widehat{\mathbf{Y}}_{\mathbf{X}}^{i} + \mathbf{Y}^{i} \odot \log \widehat{\mathbf{Y}}_{\mathbf{A}}^{i} \right) \tag{9}$$

$$Proj(h_X) = h_X Q, \quad Proj(h_A) = h_A Q, \tag{10}$$

$$\widetilde{\text{Proj}}(\mathbf{h}_{\mathbf{A}}) = \phi \left(\text{Proj}(\mathbf{h}_{\mathbf{X}}) \odot \text{Proj}(\mathbf{h}_{\mathbf{A}}) \right) \odot \text{Proj}(\mathbf{h}_{\mathbf{A}})$$
 (11)

$$\mathbf{h}_{\mathbf{A}}^* = \widetilde{\text{Proj}}(\mathbf{h}_{\mathbf{A}})\mathbf{Q}^T \tag{12}$$

 $\mathbf{h}_{\mathbf{X}} = \text{FusedAttention}(\mathbf{X}, \mathbf{A}_1, \cdots, \mathbf{A}_m, \mathbf{P}) + \mathbf{h}_{\mathbf{A}}^*$

$$= \operatorname{Softmax}\left(\frac{C_{XA} + C_{P}}{\sqrt{d_{h}}}\right) XW_{v,1} + \mathbf{h_{A}}^{*}.$$
(13)

$$\widehat{y} = \text{Softmax}(\mathbf{h}_{\mathbf{X}}^{L} \cdot \mathbf{V}) \tag{14}$$

$$L_{ce} = -\frac{1}{N} \sum_{i=1}^{N} y^i \log \widehat{y}^i \tag{15}$$

$$L = L_{ce} + \lambda \cdot L_{co}$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \left(y^{i} \log \widehat{y}^{i} + \frac{\lambda}{2} \sum \left(Y^{i} \odot \log \widehat{Y}_{X}^{i} + Y^{i} \odot \log \widehat{Y}_{A}^{i} \right) \right)$$
 (16)

Table 1: Statistics of datasets.

Dataset	# Users	# Items	# Actions	# Avg. len
Yelp	30450	20039	316541	10.4
AliEC	34148	18654	290490	8.5
Beauty	22364	12102	198502	8.9
Industrial	33061	19873	290000	8.8

Model	Yelp			AliEC				Beauty				
He	H@10	H@20	N@10	N@20	H@10	H@20	N@10	N@20	H@10	H@20	N@10	N@20
Bert4Rec	0.0354	0.0580	0.0189	0.0246	0.0503	0.0756	0.0263	0.0327	0.0542	0.0793	0.0315	0.0378
Caser	0.0357	0.0573	0.0177	0.0231	0.0336	0.0522	0.0171	0.0218	0.0416	0.0672	0.0211	0.0275
GRU4Rec	0.0350	0.0579	0.0175	0.0232	0.0361	0.0567	0.0182	0.0234	0.0510	0.0766	0.0268	0.0333
SASRec	0.0647	0.0936	0.0398	0.0471	0.0903	0.1300	0.0449	0.0549	0.0861	0.1225	0.0424	0.0516
LightSANs	0.0658	0.0970	0.0402	0.0480	0.0942	0.1354	0.0470	0.0574	0.0871	0.1242	0.0441	0.0535
FMLP	0.0657	0.0935	0.0400	0.0470	0.0936	0.1346	0.0463	0.0566	0.0855	0.1190	0.0450	0.0534
GRU4Rec _F	0.0362	0.0605	0.0182	0.0243	0.0471	0.0743	0.0237	0.0305	0.0532	0.0820	0.0274	0.0347
$SASRec_F$	0.0467	0.0749	0.0249	0.0319	0.0719	0.1081	0.0383	0.0474	0.0776	0.1082	0.0447	0.0540
$LightSANs_F$	0.0641	0.0925	0.0390	0.0461	0.0944	0.1382	0.0469	0.0579	0.0880	0.1244	0.0448	0.0540
$FMLP_F$	0.0629	0.0884	0.0385	0.0448	0.0997	0.1431	0.0495	0.0604	0.0871	0.1220	0.0452	0.0540
CL4SRec	0.0666	0.0965	0.0390	0.0465	0.0922	0.1287	0.0464	0.0556	0.0825	0.1180	0.0437	0.0526
DuoRec	0.0667	0.0962	0.0407	0.0481	0.0863	0.1272	0.0432	0.0535	0.0878	0.1244	0.0451	0.0543
FDSA	0.0668	0.0966	0.0403	0.0478	0.0900	0.1327	0.0456	0.0563	0.0839	0.1209	0.0439	0.0532
NOVA	0.0670	0.0952	0.0407	0.0478	0.0951	0.1382	0.0467	0.0575	0.0866	0.1240	0.0441	0.0535
DIF-SR	0.0673	0.0988	0.0412	0.0491	0.0983	0.1419	0.0482	0.0592	0.0871	0.1234	0.0434	0.0526
ASIF	0.0768	0.1131	0.0452	0.0543	0.1131	0.1631	0.0574	0.0700	0.0922	0.1322	0.0453	0.0554
Impr.	14.12%	14.47%	9.71%	10.59%	13.44%	13.98%	15.96%	15.89%	4.77%	6.27%	0.22%	2.03%

Table 2: Overall Performance (HR and NDCG) on public datasets.

Table 3: Performance on the industrial dataset.

Model	Industrial					
Model	H@10	H@20	N@10	N@20		
Bert4Rec	0.0706	0.1187	0.0355	0.0476		
Caser	0.0808	0.1315	0.0417	0.0544		
GRU4Rec	0.0322	0.0575	0.0190	0.0250		
SASRec	0.0942	0.1518	0.0480	0.0625		
LightSANs	0.0935	0.1556	0.0466	0.0622		
FMLP	0.0939	0.1553	0.0454	0.0608		
GRU4Rec _F	0.0830	0.1364	0.0433	0.0567		
$SASRec_F$	0.0877	0.1385	0.0463	0.0591		
$LightSANs_F$	0.0889	0.1457	0.0454	0.0596		
$FMLP_F$	0.0863	0.1438	0.0420	0.0564		
CL4SRec	0.0683	0.1134	0.0342	0.0455		
DuoRec	0.0917	0.1475	0.0475	0.0615		
FDSA	0.0913	0.1496	0.0479	0.0626		
NOVA	0.0933	0.1517	0.0456	0.0602		
DIF-SR	0.0951	0.1559	0.0459	0.0612		
ASIF	0.0996	0.1653	0.0495	0.0660		
Impr.	4.73%	6.03%	3.13%	5.43%		

Table 4: Ablation results (HR@20 and NDCG@20) on three public datasets. Each row removes a single component from the model except the last row.

Model	Yelp		Ali	EC	Beauty		
	H@20	N@20	H@20	N@20	H@20	N@20	
w/o RSA	0.1075	0.0524	0.1558	0.0668	0.1292	0.0540	
w/o HIE	0.0996	0.0493	0.1439	0.0603	0.1255	0.0543	
w/o UP	0.1077	0.0522	0.1572	0.0673	0.1298	0.0550	
w/o FA	0.1108	0.0534	0.1601	0.0683	0.1317	0.0544	
ASIF	0.1131	0.0543	0.1631	0.0700	0.1322	0.0554	

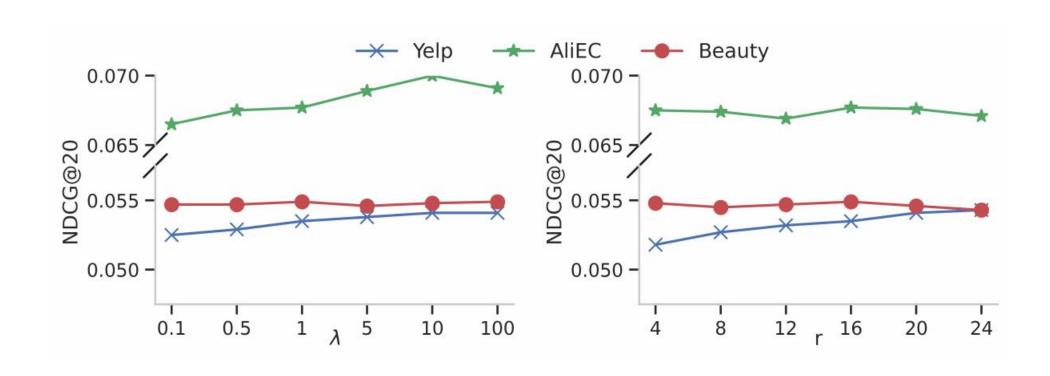


Figure 6: Influence of balance parameter λ and number of orthogonal bases r.

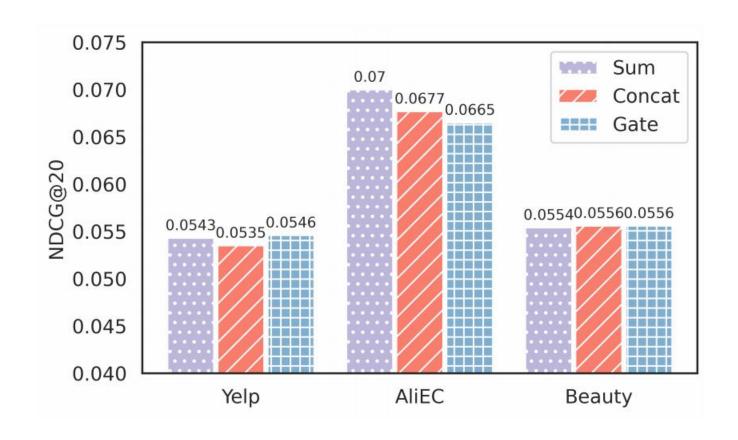


Figure 7: Impact of fusion func \mathcal{F} .

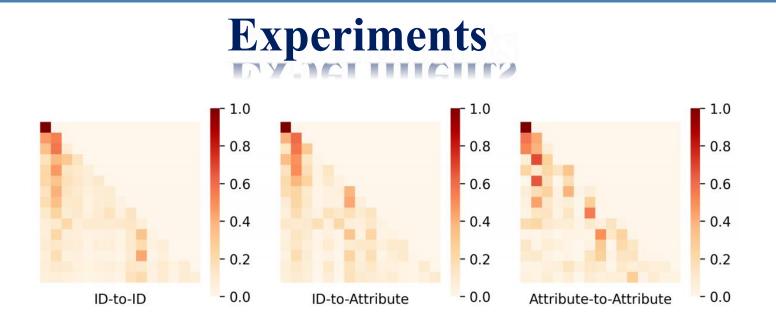


Figure 8: Visualization of attention correlations in ASIF.

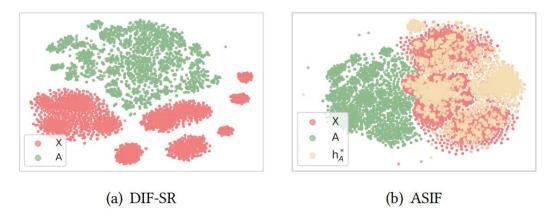


Figure 9: Visualization of clustered embeddings on Yelp.

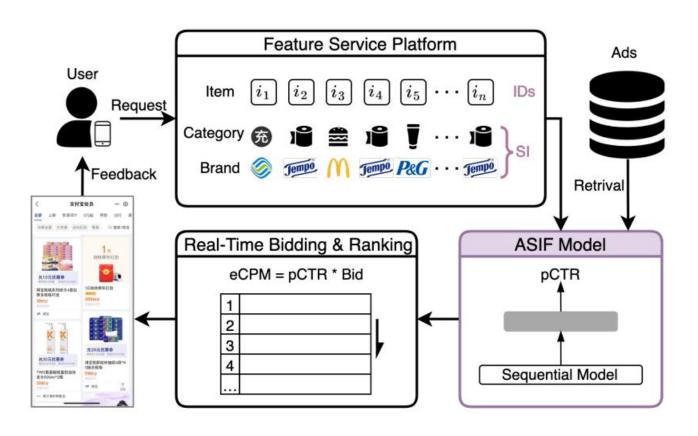


Figure 10: Online deployment of ASIF in Alipay.

Thanks